Publications

3 Publications matching the given criteria: (Clear all filters)
Author: Aaron Wright3

Abstract (Expand)

The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically predicted functions. Of particular importance are transport mechanisms, which shuttle nutrients such as B vitamins and metabolites across cell membranes and are required for the survival of microbes ranging from members of environmental microbial communities to pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, along with characterization of intracellular enzyme-cofactor associations, are needed to enable a significantly improved understanding of microbial biochemistry and physiology, microbial interactions, and microbial responses to perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular enzyme-cofactor associations through live cell labeling of the filamentous anoxygenic photoheterotroph, Chloroflexus aurantiacus J-10-fl, known to employ mechanisms for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by identifying B vitamin transport and cofactor-dependent interactions required for survival.

Authors: L. N. Anderson, P. K. Koech, A. E. Plymale, E. V. Landorf, A. Konopka, F. R. Collart, M. S. Lipton, M. F. Romine, A. T. Wright

Date Published: 22nd Dec 2015

Publication Type: Not specified

Abstract (Expand)

To date, the proposed mechanisms of nitrogenase-driven photosynthetic H2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process.

Authors: Hans Bernstein, M. A. Charania, R. S. McClure, N. C. Sadler, M. R. Melnicki, E. A. Hill, L. M. Markillie, C. D. Nicora, A. T. Wright, M. F. Romine, A. S. Beliaev

Date Published: 4th Nov 2015

Publication Type: Not specified

Abstract (Expand)

Protein reduction-oxidation (redox) modification is an important mechanism that allows microorganisms to sense environmental changes and initiate cellular responses. We have developed a quantitative chemical probe approach for live cell labeling and imaging of proteins that are sensitive to redox modifications. We utilize this in vivo strategy to identify 176 proteins undergoing approximately 5-10-fold dynamic redox change in response to nutrient limitation and subsequent replenishment in the photoautotrophic cyanobacterium Synechococcus sp. PCC 7002. We detect redox changes in as little as 30 s after nutrient perturbation and oscillations in reduction and oxidation for 60 min following the perturbation. Many of the proteins undergoing dynamic redox transformations participate in the major components for the production (photosystems and electron transport chains) or consumption (Calvin-Benson cycle and protein synthesis) of reductant and/or energy in photosynthetic organisms. Thus, our in vivo approach reveals new redox-susceptible proteins and validates those previously identified in vitro.

Authors: N. C. Sadler, M. R. Melnicki, M. H. Serres, E. D. Merkley, , , , , E. M. Zink, S. Datta, R. D. Smith, A. S. Beliaev, A. Konopka,

Date Published: 6th Nov 2013

Publication Type: Not specified

Powered by
(v.1.12.2)
Copyright © 2008 - 2022 The University of Manchester and HITS gGmbH